CSNMR-3268 sanity check about:srcdoc

Imports

In [1]: %load_ext autoreload
%sautoreload 2

#import viewdat cno lib as vdl
import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

from collections import namedtuple
import geopy.distance

import datetime

import time

import os

import subprocess

import math

import glob

import shutil

Functions

In [2]: def combine TO4(hourly dir, out name):
if os.path.isfile(out name):
print(f'{out name} already exists.. deleting it"')
0s.remove(out name)

#print(f" combine({fname base}, {out name})")
List of files to concat
flist = sorted(glob.glob('*T04"', root dir=os.path.join(hourly dir)))

with open(out name, 'wb') as wfd:
for f in flist:
f path = os.path.join(hourly dir, f)
print(f" appending {f} to {out name}")
with open(f path, 'rb') as fd:
shutil.copyfileobj (fd, wfd)

def pos read(fname tsv, header n rows=159):
if not os.path.isfile(fname tsv):
print(f"Unable to find {fname_ tsv}")
return None
Import the data into a Pandas DataFrame, and do some cleanup
df = pd.read csv(fname tsv, delimiter='\t', header=header n rows, na_
df.rename(columns=lambda x: x.strip(), inplace=True) # drop whitespa
df = df.replace({'Nan': np.nan})
#print(list(df.columns))
cols _rename = {
"SWeek': 'Week',
'TRACK': 'Track',
}
df.rename(columns=cols rename, inplace=True)
#df = week rollover unwrap(df)
return df

1of11 7/31/24, 07:15

CSNMR-3268 sanity check about:srcdoc

In [3]: # This class was brazenly stolen from mutils.py in the Sunnyvale CVS repo
class OrbitConst(object):

Orbital constants

PI = 3.14159265358979323846

A WGS84 = 6378137.0

B WGS84 = 6356752.314245179

E2 WGS84 = 6.69437999013e-3
ONE_MIN E2 = 0.99330562000987
SQRT_ONE_MIN E2 = 9.96647189335258e-1

This function was brazenly stolen from mutils.py in the Sunnyvale CVS r
def 1lh2enu(llh, ref 1lh, is rad=False, is ref rad=False):
Convert lat/lon/height to delta east/north/up.
1lh = array of lat/lon/height [lat/lon in degrees by default]
ref 1lh = point or array of lat/lon/height [lat/lon in degrees by def
is rad = True -> "1lh" lat/lon is radians, else in degrees
is ref rad = True -> "ref 1lh" lat/lon is radians, else in degrees
Make sure inputs are arrays
if len(np.shape(1lh)) ==
1lh = 1lh.reshape((1, len(1llh)))
if len(np.shape(ref 1lh)) == 1:
ref 1lh = ref llh.reshape((1, len(ref 11lh)))

Convert to radians?
scalel = np.ones(np.shape(llh))
scale2 = np.ones(np.shape(ref 11h))
ref lat = np.copy(ref Ulh[:, 0])
if not is rad:
scalel[:, 0:2] *= OrbitConst.PI/180
if not is ref rad:
scale2[:, 0:2] *= OrbitConst.PI/180
ref lat *= OrbitConst.PI/180

Compute the residuals
dllh = llh*scalel - ref llh*scale2

Compute Radii of Curvature

= np.sqrt(l - OrbitConst.E2 WGS84 * np.sin(ref lat)**2)
OrbitConst.A WGS84 / W

OrbitConst.A WGS84 * (1 - OrbitConst.E2 WGS84) / W**3

===%

Compute Metric Components

dE = dllh[:, 1] * N * np.cos(ref lat)
dN = dllh[:, O] * M
du = dllh[:, 2]

return (dE, dN, duU)

In [4]: def calc _heading(latl, longl, lat2, long2):
rlatl = math.radians(latl)
rlat2 math.radians(lat2)
rlonl = math.radians(longl)
rlon2 = math.radians(long2)
dLon = rlon2 - rlonl

20f11 7/31/24, 07:15

CSNMR-3268 sanity check about:srcdoc

x = math.cos(rlat2) * math.sin(dLon)

y = math.cos(rlatl) * math.sin(rlat2)

y -= math.sin(rlatl) * math.cos(rlat2) * math.cos(dLon)

heading = np.arctan2(x, y)

heading = math.degrees(heading)

heading = (heading + 180.0) % 360.0 # convert from -180:+180 to 0:3
return heading

In [5]: from datetime import datetime, timedelta
import pytz

def gps datetime(time week, time ms, leap seconds=37):
37 leap seconds seems to be correct for 2016-12-31 through at least
gps_epoch = datetime(1980, 1, 6, tzinfo=pytz.utc)
gps _time - utc time = leap seconds
return gps epoch + timedelta(weeks=time week, milliseconds=time ms, s

print(gps datetime (2292, 266792379))
print(gps datetime(2319, 500177.0*1000))

2023-12-13 02:05:55.379000+00:00
2024-06-21 18:55:40+00:00

In [6]: def delta enu start(df):
df[['dN', 'dE', 'dH']] = df[['N"', 'E', '"Ele']] - df.iloc[O][['N", 'E'
return df

In [7]: def delta pos start(df, start pt=None):
if start pt is None:
start = df.iloc[0]
start pt = np.array([start.MLat, start.MLon, start.MHgt])
#print(f'start pt: {start pt}')
1lh = np.array(df[['MLat', 'MLon', 'MHgt']])
#print('lLlh:")
#print(llh)
a = np.array(llh2enu(llh, start pt))
#print('a: ")
#display(a)
#print(a.shape)
#print(df.shape)
df[['dE', 'dN', 'dU']] = a.transpose()
return df

In [8]: def dms to dd(d:float, m:float, s:float):
dd = d + float(m)/60 + float(s)/3600

if d<0:

dd = float(d) - float(m)/60 - float(s)/3600
else:

dd = float(d) + float(m)/60 + float(s)/3600
return dd

In [9]: def week rollover unwrap(df):

Find time greater than one week & remove 604800 seconds
SECS_PER WEEK = 604800

min week = df.Week.min()

weeks2roll = df.Week.max() - min_ week

if weeks2roll > 0:

3o0f11 7/31/24, 07:15

CSNMR-3268 sanity check about:srcdoc

if weeks2roll > 1:
print (f'WARNING: Week Rollevers END - START = {weeks2roll} >
elif weeks2roll ==
print('Week rollever found in timing')
df['adj time'] = SECS_PER WEEK*(df.Week-min week) + df.Time
return df

Viewdat

In [10]: def import t04 dir(dir _name, fname base):
fname _TO04 f'{fname_base}.T04'
fname tsv = f'{fname base} pos.tsv'

combine T04(dir name, fname T04)

cmd = f'viewdat -d35:2 --t04 vector position -mb -h {fname T04} -o{fn
print(f'{cmd=}")

subprocess.run(cmd)

df = pos _read(fname tsv, 159) #102)

df = df[['Week', 'Time', 'RefSys',
'MFixMode', 'MFixType', 'MFixInfo',
‘MLat', 'MLon', 'MHgt', 'MSigN', 'MSigE', 'MSigU', 'MSigEN',
'RefLat', 'ReflLon', 'RefHgt',
'VLat', 'VLon', 'VHgt', 'VSigN', 'VSigE', 'VSigU', 'VSigEN',
‘corrAge']]

df = delta pos start(df)

df = week rollover unwrap(df)

df['time utc'] = df.apply(lambda x: gps datetime(time week = x['Week'
return df

In [11]: #df judo = import t04 dir('Judo EB93', 'judo')
#display(df judo)

Montera POSition (Titan Positions from
receivers)

In [12]: #subprocess.run('pos in one --dir .')

In [13]: def read pos montera(dir name, start pt=None):
fname csv = f'gen data/position/{dir_name}/pos ant.csv'
df = pd.read csv(fname csv)
df.Time = df.Time/1000.0
#df['time utc'] = df.apply(lambda x: gps datetime(time week = x['Week

#df = df[['Week', 'Time', 'RefSys’,

'MFixMode', 'MFixType', 'MFixInfo’,

'MLat', 'MLon', 'MHgt', 'MSigN', 'MSigE', 'MSigU', 'MSigEN'’
'RefLat’', 'ReflLon’', 'RefHgt',

"VLat', 'VLon', 'VHgt', 'VSigN', 'VSigE', 'VSigU', 'VSigEN'
‘corrAge']]

df = delta pos start(df, start pt)

df = week rollover unwrap(df)
return df

In [14]: df start = pd.read csv(f'gen data/position/BX992/pos ant.csv')

4 0f 11 7/31/24, 07:15

CSNMR-3268 sanity check

50f11

In [15]:

In [53]:

df start.Time = df start.Time/1000.0
start = df _start.iloc[0]
start pt = np.array([start.MLat, start.MLon, start.MHgt])

df bx = read pos montera('BX992', start pt)
#display(df bx)

df eb93 = read pos montera('EB93', start pt)
#display(df eb93)
df eb95 = read pos montera('EB95', start pt)
#display(df eb95)

Match Timestamps

Figure out which DataFrame is the smallest
print(df _bx.shape, df eb93.shape, df _eb95.shape)

times = np.intersectld(df eb93.Time, df eb95.Time)
print(len(times))

times = np.intersectld(times, df bx.Time)
print(len(times))

print(times)

print('"')

Only use the Time stamps from the smallest data set (EB93)
df bx = df bx[df bx.Time.isin(times)]

df eb93 = df eb93[df eb93.Time.isin(times)]

df eb95 = df eb95[df eb95.Time.isin(times)]

print(df _bx.shape, df eb93.shape, df _eb95.shape)

print(df _bx.Time.min(), df bx.Time.max())

print(df eb93.Time.min(), df eb93.Time.max())

print(df eb95.Time.min(), df eb95.Time.max())

print("'")

#plt.plot(df bx.Time,)
#plt.plot(df eb93.Time)
#plt.plot(df eb95.Time)
#plt.xlim([0, 100])

dt = np.array(df eb93.Time)- np.array(df bx.Time)
for n in [0, 1, 10, 100, 500, 100, 999, 1000, 2560]:

about:srcdoc

print(n, df bx.Time.iloc[n], df eb93.Time.iloc[n], df eb95.Time.iloc[

7/31/24, 07:15

CSNMR-3268 sanity check about:srcdoc

60f11

In [58]:

In [26]:

In [19]:

Out[19]:

(2561, 64) (2561, 66) (2561, 66)

2561
2561

[152235. 152236. 152237. ... 154797. 154798. 154799.]

(2561, 64) (2561, 66) (2561, 66)
152235.0 154799.0
152235.0 154799.0
152235.0 154799.0

0 152235.0 152235.0 152235.0
1 152236.0 152236.0 152236.0

0.0 0.0
0.0 0.0

10 152245.0 152245.0 152245.0 0.0 0.0

100 152335.0 152335.0 152335.0 0.0 0.0
500 152735.0 152735.0 152735.0 0.0 0.0
100 152335.0 152335.0 152335.0 0.0 0.0
999 153238.0 153238.0 153238.0 0.0 0.0

1000 153239.0 153239.0 153239.
2560 154799.0 154799.0 154799.

Dist to BX

Calculate distances to the BX

df bx['d to bx'] = np.sqrt((np.array(df bx.dE) - np.array(df bx.dE))**2 +
df eb93['d to bx'] = np.sqrt((np.array(df eb93.dE) - np.array(df bx.dE))*
df eb95['d to bx'] = np.sqrt((np.array(df eb95.dE) - np.array(df bx.dE))*
print(df_bx.shape)

print(df_eb93.shape)

print(df_eb95.shape)
(2561, 64)
(2561, 66)
(2561, 66)

Plots

plt.plot(df bx.dE, df bx.dN, 'b-')

plt.plot(df eb93.dE, df eb93.dN, 'r-')

plt.plot(df eb95.dE, df eb95.dN, 'c-', linewidth=0.5)

plt.xlabel('Delta Easting')

plt.ylabel('Delta Northing')

plt.title('Distances from start location')

plt.legend(['BX992', 'EB93', 'EB95'])

<matplotlib.legend.Legend at 0x7796defa21d0>

7/31/24, 07:15

CSNMR-3268 sanity check

7o0f11

In [20]:

Distances from start location

about:srcdoc

0- — BX992
—— EB93
_5 4 EB95

_10 -

_15 -

—20 -

Delta Northing

_25 -

_30 -

_35 -

-10 0 10 20 30 40
Delta Easting

fig, ax = plt.subplots(2, 1, figsize=(12,6))

ax[0].plot(df bx.Time, df bx.dN, 'b-")
ax[0].plot(df eb93.Time, df eb93.dN, 'r-')
ax[0].plot(df eb95.Time, df eb95.dN, 'c-', linewidth=0.5)

#ax[0].set xlabel('Time')

ax[0].set ylabel('Delta Northing')

ax[0].set title('Distances from start location')
ax[0].legend(['BX992', 'EB93', 'EB95'])
ax[0].grid(True)

ax[1].plot(df bx.Time, df bx.dE, 'b-"')
ax[1l].plot(df eb93.Time, df eb93.dE, 'r-')
ax[1l].plot(df eb95.Time, df eb95.dE, 'c-', linewidth=0.5)

ax[1l].set xlabel('Time")

ax[1l].set ylabel('Delta Easting')
#ax[1].title('Distances from start location')
ax[1l].legend(['BX992', 'EB93', 'EB95'])
ax[1].grid(True)

7/31/24, 07:15

CSNMR-3268 sanity check about:srcdoc

Distances from start location

0 -

2 10 -
£
S
Z 20
S
@
[a]

_30 -

152500 153000 153500 154000 154500
0 1 — BX992
— EB93
o 30 EBY5
£
3
2 20
w
£ 104
[7]
[a]
01 ’\\
_10 B
152500 153000 153500 154000 154500
Time
Dist to BX

In [89]: fig, ax = plt.subplots(l, 1, figsize=(12,3))
plt.plot(df eb93.Time, df eb93.d to bx, 'r-')
plt.plot(df eb95.Time, df eb95.d to bx, 'c-', linewidth=0.5)
#olt.ylim([0, 5])
plt.xlabel('Time (seconds)')
plt.ylabel('Distance to BX (m)")
#plt.title('Distances from start location')
plt.legend(['EB93', 'EB95'])
plt.grid(True)

print(df eb93.d to bx.mean(), df eb93.d to bx.min(), df eb93.d to bx.max(
print(df eb95.d to bx.mean(), df eb95.d to bx.min(), df eb95.d to bx.max(

0.23372697090771716 0.21520926036843055 0.2631118256731747 0.0027583353621
951356

1.240363953505124 1.2174956497112177 1.2737685511399963 0.0036297449127406
104

e - B SO TV U | - - - A Ao

1.2 4

g
=]
L

— EB93
EB95

o
©

o
o

Distance to BX (m)

o
'S
L

wopesden

et

o
[N]

T T T T T
152500 153000 153500 154000 154500
Time (seconds)

In []: list(df _bx.columns)

plt.plot(df eb93.Time, df eb93.MFixType, 'b-"')
plt.plot(df eb93.Time, df eb93.MFixType, 'r-')
plt.plot(df eb95.Time, df eb95.MFixType, 'c-', linewidth=0.5)

plt.xlabel('Time")

plt.ylabel('Fix Type')
#plt.title('Distances from start location')

8ofll 7/31/24, 07:15

CSNMR-3268 sanity check about:srcdoc

plt.legend(['BX992', 'EB93', 'EB95'])
In []:

In []: fig, (ax@, ax1l, ax2) = plt.subplots(3, 1, figsize=(12, 6))

ax0.plot(df 72310017.t, df 72310017.dE, 'b-')
ax0.plot(df 72613087.t, df 72613087.dE, 'r-')
ax0.plot(df r780.time utc, df r780.dE, 'c-')
ax0.plot(df judo.time utc, df judo.dE, 'g-')
ax0.set title('Distances from start location')
ax0.set ylabel('Delta Easting')

axl.plot(df 72310017.t, df 72310017.dN, 'b-')
axl.plot(df 72613087.t, df 72613087.dN, 'r-')
axl.plot(df r780.time utc, df r780.dN, 'c-')
axl.plot(df judo.time utc, df judo.dN, 'g-')
axl.set ylabel('Delta Northing')

ax2.plot(df _72310017.t, df 72310017.dH, 'b-')
ax2.plot(df 72613087.t, df 72613087.dH, 'r-')
ax2.plot(df r780.time utc, df r780.dU, 'c-')
ax2.plot(df judo.time utc, df judo.dU, 'g-')
ax2.set ylabel('Delta Up')

plt.xlabel('Time")

plt.legend(['MT 72310017', 'MT 72613087', 'R780', 'Judo Primary'l])

Antenna Distance

TBC Import

In [78]: def delta pos start tbc(df):
start = df.iloc[0]
start pt = np.array([start.N, start.E, start.El])
#print(f'start pt: {start pt}')
1lth = np.array(df[['N', 'E', '"EL']])
#print('llh:")
#print(llh)
a = np.array(llh2enu(llh, start pt))
#print('a: ")
#display(a)
#print(a.shape)
#print(df.shape)
df[['dE', 'dN', 'dU']] = a.transpose()
return df

In [79]: df c3 = pd.read csv('c3.csv')
df c9 = pd.read csv('c9.csv')
df cll = pd.read csv('cll.csv')

9o0f11 7/31/24, 07:15

CSNMR-3268 sanity check

10 0of 11

In [80]:

In [81]:

Out[81]:

In [82]:

Delta Northing

df c3 = delta pos start tbc(df c3)
df c9 = delta pos start tbc(df c9)
df cl11 = delta pos start tbc(df cll)
plt.plot(df c3.E, df c3.N, 'b-')
plt.plot(df c9.E, df c9.N, 'r-')
plt.plot(df cl11l.E, df cl1l.N, 'c-', linewidth=0.5)
plt.xlabel('Delta Easting')
plt.ylabel('Delta Northing')
plt.title('Distances from start location')
#plt.legend(['BX992', 'EB93', 'EB95'])
Text(0.5, 1.0, 'Distances from start location')
+5.338e5 Distances from start location

45

40 -

35 A

30 A

25 A

20 Bk I I I ! I I I I

60 65 70 75 80 85 90 95
Delta Easting +9.474e5

Match Timestamps
Figure out which DataFrame is the smallest

print(df c3.shape, df c9.shape, df cll.shape)

times = np.intersectld(df c9.Time, df cll.Time)
print(f'{len(times)=}")

times = np.intersectld(times, df c3.Time)
print(f'{len(times)=}"', times.min(), times.max())
#print(times)

print('")

0nly use the Time stamps from the smallest data set (EB93)

df c3 = df c3[df c3.Time.isin(times)]
df c9 = df c9[df c9.Time.isin(times)]
df cl11 = df cl1[df cll.Time.isin(times)]

about:srcdoc

7/31/24, 07:15

CSNMR-3268 sanity check about:srcdoc

print(df c3.shape, df c9.shape, df cll.shape)
print(df c3.Time.min(), df c3.Time.max())
print(df c9.Time.min(), df c9.Time.max())
print(df cl1l.Time.min(), df cll.Time.max())
print('")

(817, 8) (809, 8) (765, 8)
len(times)=765
len(times)=765 45502.7617708333 45502.7706134259

(765, 8) (765, 8) (765, 8)

45502.7617708333 45502.7706134259
45502.7617708333 45502.7706134259
45502.7617708333 45502.7706134259

Distance to BX

In [85]: # Calculate distances to the BX
df c9['d to bx'] = np.sqrt((np.array(df c9.E) - np.array(df c3.E))**2 + (
df c11['d to bx'] = np.sqrt((np.array(df cll.E) - np.array(df c3.E))**2 +

In [88]: fig, ax = plt.subplots(l, 1, figsize=(12,3))
plt.plot(df c9.Time, df c9.d to bx, 'r-')
plt.plot(df cl1l.Time, df cll.d to bx, 'c-', linewidth=0.5)
#polt.ylim([O, 5])
plt.xlabel('Time (seconds)"')
plt.ylabel('Distance to BX (m)")
#plt.title('Distances from start location')
plt.legend(['EB93', 'EB95'])
plt.grid(True)

print(df c9.d to bx.mean(), df c9.d to bx.min(), df c9.d to bx.max(), df_
print(df cl1l.d to bx.mean(), df cll.d to bx.min(), df cll.d to bx.max(),

0.2660122404122731 0.2565638322453846 0.2791594526491304 0.003449577312838

??2456937962872745 1.2290927548938158 1.2640166137954425 0.004631569286961
8634

1.2 1

1.0

0.8 —— EB93

EB95
0.6

Distance to BX (m)

0.4 1

0.062 0.064 0.066 0.068 0.070
Time (seconds) +4.55027e4

11 of 11 7/31/24, 07:15

