
Imports

%load_ext autoreload
%autoreload 2

#import viewdat_cno_lib as vdl

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from collections import namedtuple

import geopy.distance

import datetime

import time

import os

import subprocess

import math

import glob

import shutil

Functions

def combine_T04(hourly_dir, out_name):

if os.path.isfile(out_name):
print(f'{out_name} already exists.. deleting it')

os.remove(out_name)

#print(f" combine({fname_base}, {out_name})")

List of files to concat

flist = sorted(glob.glob('*T04', root_dir=os.path.join(hourly_dir)))

with open(out_name, 'wb') as wfd:

for f in flist:

f_path = os.path.join(hourly_dir, f)

print(f" appending {f} to {out_name}")

with open(f_path, 'rb') as fd:

shutil.copyfileobj(fd, wfd)

def pos_read(fname_tsv, header_n_rows=159):
if not os.path.isfile(fname_tsv):

print(f"Unable to find {fname_tsv}")

return None
Import the data into a Pandas DataFrame, and do some cleanup

df = pd.read_csv(fname_tsv, delimiter='\t', header=header_n_rows, na_values

df.rename(columns=lambda x: x.strip(), inplace=True) # drop whitespace

df = df.replace({'Nan': np.nan})
#print(list(df.columns))

cols_rename = {

'%Week': 'Week',

'TRACK': 'Track',

}

df.rename(columns=cols_rename, inplace=True)
#df = week_rollover_unwrap(df)

return df

In [1]:

In [2]:

CSNMR-3268_sanity_check about:srcdoc

1 of 11 7/31/24, 07:15

This class was brazenly stolen from mutils.py in the Sunnyvale CVS repo

class OrbitConst(object):

"""

 Orbital constants

 """

PI = 3.14159265358979323846

A_WGS84 = 6378137.0

B_WGS84 = 6356752.314245179

E2_WGS84 = 6.69437999013e-3

ONE_MIN_E2 = 0.99330562000987

SQRT_ONE_MIN_E2 = 9.96647189335258e-1

This function was brazenly stolen from mutils.py in the Sunnyvale CVS repo

def llh2enu(llh, ref_llh, is_rad=False, is_ref_rad=False):
"""

 Convert lat/lon/height to delta east/north/up.

 llh = array of lat/lon/height [lat/lon in degrees by default]

 ref_llh = point or array of lat/lon/height [lat/lon in degrees by default]

 is_rad = True -> "llh" lat/lon is radians, else in degrees

 is_ref_rad = True -> "ref_llh" lat/lon is radians, else in degrees

 """

Make sure inputs are arrays

if len(np.shape(llh)) == 1:

llh = llh.reshape((1, len(llh)))

if len(np.shape(ref_llh)) == 1:

ref_llh = ref_llh.reshape((1, len(ref_llh)))

Convert to radians?

scale1 = np.ones(np.shape(llh))
scale2 = np.ones(np.shape(ref_llh))
ref_lat = np.copy(ref_llh[:, 0])

if not is_rad:

scale1[:, 0:2] *= OrbitConst.PI/180
if not is_ref_rad:

scale2[:, 0:2] *= OrbitConst.PI/180
ref_lat *= OrbitConst.PI/180

Compute the residuals

dllh = llh*scale1 - ref_llh*scale2

Compute Radii of Curvature

W = np.sqrt(1 - OrbitConst.E2_WGS84 * np.sin(ref_lat)**2)
N = OrbitConst.A_WGS84 / W

M = OrbitConst.A_WGS84 * (1 - OrbitConst.E2_WGS84) / W**3

Compute Metric Components

dE = dllh[:, 1] * N * np.cos(ref_lat)
dN = dllh[:, 0] * M

dU = dllh[:, 2]

return (dE, dN, dU)

def calc_heading(lat1, long1, lat2, long2):

rlat1 = math.radians(lat1)
rlat2 = math.radians(lat2)
rlon1 = math.radians(long1)
rlon2 = math.radians(long2)
dLon = rlon2 - rlon1

In [3]:

In [4]:

CSNMR-3268_sanity_check about:srcdoc

2 of 11 7/31/24, 07:15

x = math.cos(rlat2) * math.sin(dLon)
y = math.cos(rlat1) * math.sin(rlat2)
y -= math.sin(rlat1) * math.cos(rlat2) * math.cos(dLon)
heading = np.arctan2(x, y)

heading = math.degrees(heading)
heading = (heading + 180.0) % 360.0 # convert from -180:+180 to 0:360

return heading

from datetime import datetime, timedelta

import pytz

def gps_datetime(time_week, time_ms, leap_seconds=37):
37 leap seconds seems to be correct for 2016-12-31 through at least 2023

gps_epoch = datetime(1980, 1, 6, tzinfo=pytz.utc)
gps_time - utc_time = leap_seconds

return gps_epoch + timedelta(weeks=time_week, milliseconds=time_ms, seconds

print(gps_datetime(2292, 266792379))

print(gps_datetime(2319, 500177.0*1000))

2023-12-13 02:05:55.379000+00:00

2024-06-21 18:55:40+00:00

def delta_enu_start(df):

df[['dN', 'dE', 'dH']] = df[['N', 'E', 'Ele']] - df.iloc[0][['N', 'E'

return df

def delta_pos_start(df, start_pt=None):
if start_pt is None:

start = df.iloc[0]
start_pt = np.array([start.MLat, start.MLon, start.MHgt])

#print(f'start_pt: {start_pt}')

llh = np.array(df[['MLat', 'MLon', 'MHgt']])

#print('llh:')

#print(llh)

a = np.array(llh2enu(llh, start_pt))

#print('a:')

#display(a)

#print(a.shape)

#print(df.shape)

df[['dE', 'dN', 'dU']] = a.transpose()
return df

def dms_to_dd(d:float, m:float, s:float):

dd = d + float(m)/60 + float(s)/3600
if d<0:

dd = float(d) - float(m)/60 - float(s)/3600
else:

dd = float(d) + float(m)/60 + float(s)/3600
return dd

def week_rollover_unwrap(df):

'''

 Find time greater than one week & remove 604800 seconds

 '''

SECS_PER_WEEK = 604800

min_week = df.Week.min()
weeks2roll = df.Week.max() - min_week

if weeks2roll > 0:

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

CSNMR-3268_sanity_check about:srcdoc

3 of 11 7/31/24, 07:15

if weeks2roll > 1:

print(f'WARNING: Week Rollevers END - START = {weeks2roll} > 1'

elif weeks2roll == 1:

print('Week rollever found in timing')

df['adj_time'] = SECS_PER_WEEK*(df.Week-min_week) + df.Time
return df

Viewdat

def import_t04_dir(dir_name, fname_base):

fname_T04 = f'{fname_base}.T04'

fname_tsv = f'{fname_base}_pos.tsv'

combine_T04(dir_name, fname_T04)

cmd = f'viewdat -d35:2 --t04_vector_position -mb -h {fname_T04} -o{fname_tsv

print(f'{cmd=}')

subprocess.run(cmd)
df = pos_read(fname_tsv, 159) #102)

df = df[['Week', 'Time', 'RefSys',

'MFixMode', 'MFixType', 'MFixInfo',

'MLat', 'MLon', 'MHgt', 'MSigN', 'MSigE', 'MSigU', 'MSigEN',

'RefLat', 'RefLon', 'RefHgt',

'VLat', 'VLon', 'VHgt', 'VSigN', 'VSigE', 'VSigU', 'VSigEN',

'corrAge']]

df = delta_pos_start(df)

df = week_rollover_unwrap(df)

df['time_utc'] = df.apply(lambda x: gps_datetime(time_week = x['Week'

return df

#df_judo = import_t04_dir('Judo_EB93', 'judo')

#display(df_judo)

Montera POSition (Titan Positions from
receivers)

#subprocess.run('pos_in_one --dir .')

def read_pos_montera(dir_name, start_pt=None):
fname_csv = f'gen_data/position/{dir_name}/pos_ant.csv'

df = pd.read_csv(fname_csv)
df.Time = df.Time/1000.0
#df['time_utc'] = df.apply(lambda x: gps_datetime(time_week = x['Week'], time_ms = x['Time

#df = df[['Week', 'Time', 'RefSys',

'MFixMode', 'MFixType', 'MFixInfo',

'MLat', 'MLon', 'MHgt', 'MSigN', 'MSigE', 'MSigU', 'MSigEN', 'MSigEU', 'MSigNU',

'RefLat', 'RefLon', 'RefHgt',

'VLat', 'VLon', 'VHgt', 'VSigN', 'VSigE', 'VSigU', 'VSigEN', 'VSigEU', 'VSigNU',

'corrAge']]

df = delta_pos_start(df, start_pt)

df = week_rollover_unwrap(df)

return df

df_start = pd.read_csv(f'gen_data/position/BX992/pos_ant.csv')

In [10]:

In [11]:

In [12]:

In [13]:

In [14]:

CSNMR-3268_sanity_check about:srcdoc

4 of 11 7/31/24, 07:15

df_start.Time = df_start.Time/1000.0
start = df_start.iloc[0]
start_pt = np.array([start.MLat, start.MLon, start.MHgt])

df_bx = read_pos_montera('BX992', start_pt)

#display(df_bx)

df_eb93 = read_pos_montera('EB93', start_pt)

#display(df_eb93)

df_eb95 = read_pos_montera('EB95', start_pt)

#display(df_eb95)

Match Timestamps

Figure out which DataFrame is the smallest

print(df_bx.shape, df_eb93.shape, df_eb95.shape)

times = np.intersect1d(df_eb93.Time, df_eb95.Time)
print(len(times))

times = np.intersect1d(times, df_bx.Time)
print(len(times))

print(times)

print('')

Only use the Time stamps from the smallest data set (EB93)

df_bx = df_bx[df_bx.Time.isin(times)]
df_eb93 = df_eb93[df_eb93.Time.isin(times)]
df_eb95 = df_eb95[df_eb95.Time.isin(times)]
print(df_bx.shape, df_eb93.shape, df_eb95.shape)
print(df_bx.Time.min(), df_bx.Time.max())
print(df_eb93.Time.min(), df_eb93.Time.max())
print(df_eb95.Time.min(), df_eb95.Time.max())
print('')

#plt.plot(df_bx.Time,)

#plt.plot(df_eb93.Time)

#plt.plot(df_eb95.Time)

#plt.xlim([0, 100])

dt = np.array(df_eb93.Time)- np.array(df_bx.Time)
for n in [0, 1, 10, 100, 500, 100, 999, 1000, 2560]:

print(n, df_bx.Time.iloc[n], df_eb93.Time.iloc[n], df_eb95.Time.iloc[

In [15]:

In [53]:

CSNMR-3268_sanity_check about:srcdoc

5 of 11 7/31/24, 07:15

(2561, 64) (2561, 66) (2561, 66)

2561

2561

[152235. 152236. 152237. ... 154797. 154798. 154799.]

(2561, 64) (2561, 66) (2561, 66)

152235.0 154799.0

152235.0 154799.0

152235.0 154799.0

0 152235.0 152235.0 152235.0 0.0 0.0

1 152236.0 152236.0 152236.0 0.0 0.0

10 152245.0 152245.0 152245.0 0.0 0.0

100 152335.0 152335.0 152335.0 0.0 0.0

500 152735.0 152735.0 152735.0 0.0 0.0

100 152335.0 152335.0 152335.0 0.0 0.0

999 153238.0 153238.0 153238.0 0.0 0.0

1000 153239.0 153239.0 153239.0 0.0 0.0

2560 154799.0 154799.0 154799.0 0.0 0.0

Dist to BX

Calculate distances to the BX

df_bx['d_to_bx'] = np.sqrt((np.array(df_bx.dE) - np.array(df_bx.dE))**2 +
df_eb93['d_to_bx'] = np.sqrt((np.array(df_eb93.dE) - np.array(df_bx.dE))**
df_eb95['d_to_bx'] = np.sqrt((np.array(df_eb95.dE) - np.array(df_bx.dE))**

print(df_bx.shape)
print(df_eb93.shape)
print(df_eb95.shape)

(2561, 64)

(2561, 66)

(2561, 66)

Plots

plt.plot(df_bx.dE, df_bx.dN, 'b-')

plt.plot(df_eb93.dE, df_eb93.dN, 'r-')

plt.plot(df_eb95.dE, df_eb95.dN, 'c-', linewidth=0.5)

plt.xlabel('Delta Easting')
plt.ylabel('Delta Northing')
plt.title('Distances from start location')
plt.legend(['BX992', 'EB93', 'EB95'])

<matplotlib.legend.Legend at 0x7796defa21d0>

In [58]:

In [26]:

In [19]:

Out[19]:

CSNMR-3268_sanity_check about:srcdoc

6 of 11 7/31/24, 07:15

fig, ax = plt.subplots(2, 1, figsize=(12,6))

ax[0].plot(df_bx.Time, df_bx.dN, 'b-')

ax[0].plot(df_eb93.Time, df_eb93.dN, 'r-')

ax[0].plot(df_eb95.Time, df_eb95.dN, 'c-', linewidth=0.5)

#ax[0].set_xlabel('Time')

ax[0].set_ylabel('Delta Northing')
ax[0].set_title('Distances from start location')
ax[0].legend(['BX992', 'EB93', 'EB95'])

ax[0].grid(True)

ax[1].plot(df_bx.Time, df_bx.dE, 'b-')

ax[1].plot(df_eb93.Time, df_eb93.dE, 'r-')

ax[1].plot(df_eb95.Time, df_eb95.dE, 'c-', linewidth=0.5)

ax[1].set_xlabel('Time')
ax[1].set_ylabel('Delta Easting')
#ax[1].title('Distances from start location')

ax[1].legend(['BX992', 'EB93', 'EB95'])

ax[1].grid(True)

In [20]:

CSNMR-3268_sanity_check about:srcdoc

7 of 11 7/31/24, 07:15

Dist to BX

fig, ax = plt.subplots(1, 1, figsize=(12,3))
plt.plot(df_eb93.Time, df_eb93.d_to_bx, 'r-')

plt.plot(df_eb95.Time, df_eb95.d_to_bx, 'c-', linewidth=0.5)
#plt.ylim([0, 5])

plt.xlabel('Time (seconds)')
plt.ylabel('Distance to BX (m)')
#plt.title('Distances from start location')

plt.legend(['EB93', 'EB95'])

plt.grid(True)

print(df_eb93.d_to_bx.mean(), df_eb93.d_to_bx.min(), df_eb93.d_to_bx.max(),
print(df_eb95.d_to_bx.mean(), df_eb95.d_to_bx.min(), df_eb95.d_to_bx.max(),

0.23372697090771716 0.21520926036843055 0.2631118256731747 0.0027583353621

951356

1.240363953505124 1.2174956497112177 1.2737685511399963 0.0036297449127406

104

list(df_bx.columns)

plt.plot(df_eb93.Time, df_eb93.MFixType, 'b-')

plt.plot(df_eb93.Time, df_eb93.MFixType, 'r-')

plt.plot(df_eb95.Time, df_eb95.MFixType, 'c-', linewidth=0.5)

plt.xlabel('Time')
plt.ylabel('Fix Type')
#plt.title('Distances from start location')

In [89]:

In []:

CSNMR-3268_sanity_check about:srcdoc

8 of 11 7/31/24, 07:15

plt.legend(['BX992', 'EB93', 'EB95'])

fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(12, 6))

ax0.plot(df_72310017.t, df_72310017.dE, 'b-')

ax0.plot(df_72613087.t, df_72613087.dE, 'r-')

ax0.plot(df_r780.time_utc, df_r780.dE, 'c-')

ax0.plot(df_judo.time_utc, df_judo.dE, 'g-')

ax0.set_title('Distances from start location')
ax0.set_ylabel('Delta Easting')

ax1.plot(df_72310017.t, df_72310017.dN, 'b-')

ax1.plot(df_72613087.t, df_72613087.dN, 'r-')

ax1.plot(df_r780.time_utc, df_r780.dN, 'c-')

ax1.plot(df_judo.time_utc, df_judo.dN, 'g-')

ax1.set_ylabel('Delta Northing')

ax2.plot(df_72310017.t, df_72310017.dH, 'b-')

ax2.plot(df_72613087.t, df_72613087.dH, 'r-')

ax2.plot(df_r780.time_utc, df_r780.dU, 'c-')

ax2.plot(df_judo.time_utc, df_judo.dU, 'g-')

ax2.set_ylabel('Delta Up')

plt.xlabel('Time')

plt.legend(['MT 72310017', 'MT 72613087', 'R780', 'Judo Primary'])

Antenna Distance

TBC Import

def delta_pos_start_tbc(df):

start = df.iloc[0]
start_pt = np.array([start.N, start.E, start.El])
#print(f'start_pt: {start_pt}')

llh = np.array(df[['N', 'E', 'El']])

#print('llh:')

#print(llh)

a = np.array(llh2enu(llh, start_pt))

#print('a:')

#display(a)

#print(a.shape)

#print(df.shape)

df[['dE', 'dN', 'dU']] = a.transpose()
return df

df_c3 = pd.read_csv('c3.csv')
df_c9 = pd.read_csv('c9.csv')
df_c11 = pd.read_csv('c11.csv')

In []:

In []:

In [78]:

In [79]:

CSNMR-3268_sanity_check about:srcdoc

9 of 11 7/31/24, 07:15

df_c3 = delta_pos_start_tbc(df_c3)

df_c9 = delta_pos_start_tbc(df_c9)

df_c11 = delta_pos_start_tbc(df_c11)

plt.plot(df_c3.E, df_c3.N, 'b-')

plt.plot(df_c9.E, df_c9.N, 'r-')

plt.plot(df_c11.E, df_c11.N, 'c-', linewidth=0.5)

plt.xlabel('Delta Easting')
plt.ylabel('Delta Northing')
plt.title('Distances from start location')
#plt.legend(['BX992', 'EB93', 'EB95'])

Text(0.5, 1.0, 'Distances from start location')

Match Timestamps

Figure out which DataFrame is the smallest

print(df_c3.shape, df_c9.shape, df_c11.shape)

times = np.intersect1d(df_c9.Time, df_c11.Time)
print(f'{len(times)=}')

times = np.intersect1d(times, df_c3.Time)
print(f'{len(times)=}', times.min(), times.max())
#print(times)

print('')

Only use the Time stamps from the smallest data set (EB93)

df_c3 = df_c3[df_c3.Time.isin(times)]
df_c9 = df_c9[df_c9.Time.isin(times)]
df_c11 = df_c11[df_c11.Time.isin(times)]

In [80]:

In [81]:

Out[81]:

In [82]:

CSNMR-3268_sanity_check about:srcdoc

10 of 11 7/31/24, 07:15

print(df_c3.shape, df_c9.shape, df_c11.shape)
print(df_c3.Time.min(), df_c3.Time.max())
print(df_c9.Time.min(), df_c9.Time.max())
print(df_c11.Time.min(), df_c11.Time.max())
print('')

(817, 8) (809, 8) (765, 8)

len(times)=765

len(times)=765 45502.7617708333 45502.7706134259

(765, 8) (765, 8) (765, 8)

45502.7617708333 45502.7706134259

45502.7617708333 45502.7706134259

45502.7617708333 45502.7706134259

Distance to BX

Calculate distances to the BX

df_c9['d_to_bx'] = np.sqrt((np.array(df_c9.E) - np.array(df_c3.E))**2 + (

df_c11['d_to_bx'] = np.sqrt((np.array(df_c11.E) - np.array(df_c3.E))**2 +

fig, ax = plt.subplots(1, 1, figsize=(12,3))
plt.plot(df_c9.Time, df_c9.d_to_bx, 'r-')

plt.plot(df_c11.Time, df_c11.d_to_bx, 'c-', linewidth=0.5)
#plt.ylim([0, 5])

plt.xlabel('Time (seconds)')
plt.ylabel('Distance to BX (m)')
#plt.title('Distances from start location')

plt.legend(['EB93', 'EB95'])

plt.grid(True)

print(df_c9.d_to_bx.mean(), df_c9.d_to_bx.min(), df_c9.d_to_bx.max(), df_c9

print(df_c11.d_to_bx.mean(), df_c11.d_to_bx.min(), df_c11.d_to_bx.max(), df_c11

0.2660122404122731 0.2565638322453846 0.2791594526491304 0.003449577312838

043

1.2456937962872745 1.2290927548938158 1.2640166137954425 0.004631569286961

8634

In [85]:

In [88]:

CSNMR-3268_sanity_check about:srcdoc

11 of 11 7/31/24, 07:15

