CSNMR-3189 sanity check about:srcdoc

Imports

In [2]: %load_ext autoreload
%sautoreload 2

#import viewdat cno lib as vdl
import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

from collections import namedtuple
import geopy.distance

import datetime

import time

import os

import subprocess

import math

import glob

import shutil

Functions

In [3]: def combine TO4(hourly dir, out name):
if os.path.isfile(out name):
print(f'{out name} already exists.. deleting it"')
0s.remove(out name)

#print(f" combine({fname base}, {out name})")
List of files to concat
flist = sorted(glob.glob('*T04"', root dir=os.path.join(hourly dir)))

with open(out name, 'wb') as wfd:
for f in flist:
f path = os.path.join(hourly dir, f)
print(f" appending {f} to {out name}")
with open(f path, 'rb') as fd:
shutil.copyfileobj (fd, wfd)

In [4]: def pos _read(fname tsv, header n rows=159):
if not os.path.isfile(fname tsv):
print(f"Unable to find {fname tsv}")
return None
Import the data into a Pandas DataFrame, and do some cleanup
df = pd.read csv(fname tsv, delimiter='\t', header=header n rows, na_
df.rename(columns=lambda x: x.strip(), inplace=True) # drop whitespa
df = df.replace({'Nan': np.nan})
#print(list(df.columns))
cols rename = {
"SWeek': 'Week',
'TRACK': 'Track',
}
df.rename(columns=cols rename, inplace=True)
#df = week rollover unwrap(df)
return df

1of11 6/22/24, 16:47

CSNMR-3189 sanity check about:srcdoc

In [5]: # This class was brazenly stolen from mutils.py in the Sunnyvale CVS repo
class OrbitConst(object):

Orbital constants

PI = 3.14159265358979323846

A WGS84 = 6378137.0

B WGS84 = 6356752.314245179

E2 WGS84 = 6.69437999013e-3
ONE_MIN E2 = 0.99330562000987
SQRT_ONE_MIN E2 = 9.96647189335258e-1

This function was brazenly stolen from mutils.py in the Sunnyvale CVS r
def 1lh2enu(llh, ref 1lh, is rad=False, is ref rad=False):
Convert lat/lon/height to delta east/north/up.
1lh = array of lat/lon/height [lat/lon in degrees by default]
ref 1lh = point or array of lat/lon/height [lat/lon in degrees by def
is rad = True -> "1lh" lat/lon is radians, else in degrees
is ref rad = True -> "ref 1lh" lat/lon is radians, else in degrees
Make sure inputs are arrays
if len(np.shape(1lh)) ==
1lh = 1lh.reshape((1, len(1llh)))
if len(np.shape(ref 1lh)) == 1:
ref 1lh = ref llh.reshape((1, len(ref 11lh)))

Convert to radians?
scalel = np.ones(np.shape(llh))
scale2 = np.ones(np.shape(ref 11h))
ref lat = np.copy(ref Ulh[:, 0])
if not is rad:
scalel[:, 0:2] *= OrbitConst.PI/180
if not is ref rad:
scale2[:, 0:2] *= OrbitConst.PI/180
ref lat *= OrbitConst.PI/180

Compute the residuals
dllh = llh*scalel - ref llh*scale2

Compute Radii of Curvature

= np.sqrt(l - OrbitConst.E2 WGS84 * np.sin(ref lat)**2)
OrbitConst.A WGS84 / W

OrbitConst.A WGS84 * (1 - OrbitConst.E2 WGS84) / W**3

===%

Compute Metric Components

dE = dllh[:, 1] * N * np.cos(ref lat)
dN = dllh[:, O] * M
du = dllh[:, 2]

return (dE, dN, duU)

In [6]: def calc _heading(latl, longl, lat2, long2):
rlatl = math.radians(latl)
rlat2 math.radians(lat2)
rlonl = math.radians(longl)
rlon2 = math.radians(long2)
dLon = rlon2 - rlonl

20f11 6/22/24, 16:47

CSNMR-3189 sanity check about:srcdoc

3o0f11

In [7]:

In [8]:

In [9]:

In [10]:

In [11]:

x = math.cos(rlat2) * math.sin(dLon)

y = math.cos(rlatl) * math.sin(rlat2)

y -= math.sin(rlatl) * math.cos(rlat2) * math.cos(dLon)

heading = np.arctan2(x, y)

heading = math.degrees(heading)

heading = (heading + 180.0) % 360.0 # convert from -180:+180 to 0:3
return heading

from datetime import datetime, timedelta
import pytz

def gps datetime(time week, time ms, leap seconds=37):
37 leap seconds seems to be correct for 2016-12-31 through at least
gps_epoch = datetime(1980, 1, 6, tzinfo=pytz.utc)
gps _time - utc time = leap seconds
return gps epoch + timedelta(weeks=time week, milliseconds=time ms, s

print(gps datetime (2292, 266792379))
print(gps datetime(2319, 500177.0*1000))

2023-12-13 02:05:55.379000+00:00
2024-06-21 18:55:40+00:00

def delta enu start(df):
df[['dN', 'dE', 'dH']] = df[['N"', 'E', '"Ele']] - df.iloc[O][['N", 'E'
return df

def delta pos start(df):
start = df.iloc[0]
start_pt = np.array([start.MLat, start.MLon, start.MHgt])
#print(f'start pt: {start pt}')
1lh = np.array(df[['MLat', 'MLon', 'MHgt'll)
#orint('llh:")
#print(llh)
a = np.array(llh2enu(llh, start pt))
#print('a: ")
#display(a)
#print(a.shape)
#print(df.shape)
df[['dE', 'dN', 'dU']] = a.transpose()
return df

def dms to dd(d:float, m:float, s:float):
dd d + float(m)/60 + float(s)/3600
if d<0:
dd
else:
dd
return dd

float(d) - float(m)/60 - float(s)/3600

float(d) + float(m)/60 + float(s)/3600

def import t04 dir(dir name, fname base):
fname T04 f'{fname _base}.T04'
fname_tsv f'{fname_base} pos.tsv'

combine TO4(dir name, fname T04)

cmd = f'viewdat -d35:2 --t04 vector position -mb -h {fname T04} -o{fn
print(f'{cmd=}")

subprocess.run(cmd)

df = pos read(fname tsv, 159) #102)

6/22/24, 16:47

CSNMR-3189 sanity check

4 0f 11

In [12]:

In [13]:

In [14]:

about:srcdoc

df = df[['Week', 'Time', 'RefSys',
'MFixMode', 'MFixType', 'MFixInfo',
'MLat', 'MLon', 'MHgt', 'MSigN', 'MSigE', 'MSigU', 'MSigEN',
'RefLat', 'ReflLon', 'RefHgt',
'VLat', 'VLon', 'VHgt', 'VSigN', 'VSigE', 'VSigU', 'VSigEN',
‘corrAge']]

df = delta pos start(df)
df['time utc'] = df.apply(lambda x: gps datetime(time week = x['Week'
return df

Viewdat (Judo, R780)

df judo = import t04 dir('Judo EB93', 'judo')

#display(df judo)

judo.T04 already exists.. deleting it
appending EB1-5093 202406211845.T04 to judo.T04
appending EB1-5093 202406211900.T04 to judo.T04
appending EB1-5093 202406211915.T04 to judo.T04
appending EB1-5093 202406211930.T04 to judo.T04
appending EB1-5093 202406211945.T04 to judo.T04
appending EB1-5093 202406212000.T04 to judo.T04
appending EB1-5093 202406212015.T04 to judo.T04
appending EB1-5093 202406212030.T04 to judo.T04

cmd=["'viewdat', '-d35:2', '--t04 vector position', '-mb', '-h', 'judo.T04'

, '-ojudo _pos.tsv']

df r780= import t04 dir('R780', 'r780")

#display(df r780)

r780.704 already exists.. deleting it
appending Trimble 202406211845.T04 to r780.T04
appending Trimble 202406211900.T04 to r780.T04
appending Trimble 202406211915.T04 to r780.T04
appending Trimble 202406211930.T04 to r780.T04
appending Trimble 202406211945.T04 to r780.T04
appending Trimble 202406212000.T04 to r780.T04
appending Trimble 202406212015.T04 to r780.T04
appending Trimble 202406212030.T04 to r780.T04
appending Trimble 202406212045.T04 to r780.T04

cmd=["'viewdat', '-d35:2', '--t04 vector position', '-mb', '-h', 'r780.T04'

, '-0r780 pos.tsv']

judo N = df judo.shape[0O] -1
print('Judo UTC:', df judo.time utc[O],
r780 N = df r780.shape[0] -1
print('R780 UTC:', df r780.time utc[0O],
plt.plot(df judo.time utc)

plt.plot(df r780.time utc)

print(df judo.shape[0])

#print(df judo.time utc[1800:1805])
#print(df 72310017.t[0:5])

df judo.time utc[judo N]) #, df_

df r780.time utc[r780 N]) #, df

Judo UTC: 2024-06-21 18:55:40+00:00 2024-06-21 20:44:22.500000+00:00

R780 UTC: 2024-06-21 18:44:23.100000+00:00 2024-06-21 20:45:25.800000+00:0
0

64829

6/22/24, 16:47

CSNMR-3189 sanity check

about:srcdoc

21 20:45 4

21 20:30 A

21 20:15 A

21 20:00 A

21 19:45 A

21 19:30 A

21 19:15 A

21 19:00 A

21 18:45 A

0 10000 20000 30000 40000 50000 60000

ATS

In [15]: count =0
header = None
mylist =[]

with open("ATSTest LogFile JUDO IN LINE and PERP.txt") as file:

for line in file:
if line.startswith('ATSDataEvent'):

line = line.strip()

#print(line)

if header is None:
header = line.split("\t")
#print(header)
#print("")

else:
d = dict(zip(header, line.split("\t")))
mylist.append(d)
#1f count < 3:
print(line.split("\t"))
print("")

count += 1
#1f count > 10:
break
df ats = pd.DataFrame(mylist)
df ats = df _ats.drop(columns=['ATSDataEvent'])

df ats = df ats.astype({

'SerialNumber': 'int',
'N': 'float',
'"E': 'float',

50f11

70000

6/22/24, 16:47

CSNMR-3189 sanity check

60f11

'"Ele':

}

df ats['t'] = pd.to datetime(df ats['Date'] + '

"float',

df ats.t = df ats.t + pd.Timedelta('06:00:00")

display(df ats[['Date’,

#display(df ats.info())

#

Split out

#

df 72613087
df 72613087

df 72310017
df 72310017

df 72310017
df 72613087

display(df 72310017)

231136
231137
231138
231139

231140

Date
6/21/2024
6/21/2024
6/21/2024
6/21/2024
6/21/2024

6/21/2024
6/21/2024
6/21/2024
6/21/2024
6/21/2024

Time
13:04:03.638
13:04:03.639
13:04:03.640
13:04:03.641

13:04:03.722

14:42:22.431
14:42:22.516
14:42:22.517
14:42:22.593

14:42:24.442

231141 rows x 4 columns

'Time',

the two MT Targets

df ats.query("SerialNumber==72613087")[['t",
df 72613087[df 72613087.N != 0]

df ats.query("SerialNumber==72310017")[['t",
df 72310017[df 72310017.N != 0]

PCClock
13:04:03.545
13:04:03.550
13:04:03.591
13:04:03.598
13:04:03.644

14:42:22.402
14:42:22.451
14:42:22.503
14:42:22.553

14:42:22.602

'"PCClock’,

't'11)

‘Date’,

'Date’,

delta enu start(df 72310017)
delta enu start(df 72613087)

t
2024-06-21 19:04:03.545000+00:00
2024-06-21 19:04:03.550000+00:00
2024-06-21 19:04:03.591000+00:00
2024-06-21 19:04:03.598000+00:00

2024-06-21 19:04:03.644000+00:00

2024-06-21 20:42:22.402000+00:00
2024-06-21 20:42:22.451000+00:00
2024-06-21 20:42:22.503000+00:00
2024-06-21 20:42:22.553000+00:00

2024-06-21 20:42:22.602000+00:00

about:srcdoc

" + df ats['PCClock'], ut

'"Time'

'"Time'

6/22/24, 16:47

CSNMR-3189 sanity check

7o0f11

231083

231085

231087

231089

231091

t

2024-06-21
19:04:03.550000+00:00

2024-06-21
19:04:03.598000+00:00

2024-06-21
19:04:03.650000+00:00

2024-06-21
19:04:03.698000+00:00

2024-06-21
19:04:03.749000+00:00

2024-06-21
20:42:19.985000+00:00

2024-06-21
20:42:20.037000+00:00

2024-06-21
20:42:20.089000+00:00

2024-06-21
20:42:20.136000+00:00

2024-06-21
20:42:20.186000+00:00

97479 rows x 13 columns

In [16]:

#display(df 72613087)
#print("")

#print(df 72613087.delta.mean())
plt.hist(df 72613087.delta)

Out[16]:

array([0. ,

6.9640e+03, 6.8390e+03,
0.0062, 0.0124, 0.0186, 0.0248, 0.031 ,

Date

6/21/2024

6/21/2024

6/21/2024

6/21/2024

6/21/2024

6/21/2024

6/21/2024

6/21/2024

6/21/2024

6/21/2024

0.0496, 0.0558, 0.062 1),
<BarContainer object of 10 artists>)

Time SerialNumber
13:04:03.639 72310017
13:04:03.641 72310017
13:04:03.723 72310017
13:04:03.724 72310017
13:04:03.801 72310017
14:42:20.015 72310017
14:42:20.090 72310017
14:42:20.094 72310017
14:42:22.031 72310017
14:42:22.033 72310017

df 72613087['delta'] = df ats.t.diff().dt.total seconds()

PCTics

607240031

607240078

607240125

607240171

607240218

613136421

613136484

613136531

613136578

613136625

(array([1.5303e+04, 2.1294e+04, 2.1080e+04, 6.9290e+03, 5.2010e+03,
1.3614e+04, 3.7250e+03, 6.0000e+00]),
0.0372, 0.0434,

about:srcdoc

13:04;

13:04:

13:04;

13:04;

13:04:

14:42:

14:42.

14:42:

14:42.

14:42:

6/22/24, 16:47

CSNMR-3189 sanity check about:srcdoc

20000 -

17500 A

15000 A

12500 A

10000 -

7500 A

5000 A

2500 -

0.00 0.01 0.02 0.03 0.04 0.05 0.06

In [17]: df _72310017['delta'] = df ats.t.diff().dt.total seconds()
#df 72310017.1info()
#print(df 72310017.N.min())
#print(df 72310017.delta.mean())
plt.hist(df 72310017.delta)
#display(df 72310017)

Qut[17]: (array([10403., 7014., 4372., 4523., 6069., 6294., 21091., 19389.,
14949., 3375.1),
array([-0.601 , ©0.0045, ©0.01 , 0.0155, 0.021 , 0.0265, 0.032 ,
0.0375, 0.043 , 0.0485, 0.054]),
<BarContainer object of 10 artists>)

8ofll 6/22/24, 16:47

CSNMR-3189 sanity check

9o0f11

20000 -

17500 -

15000 -

12500 A

10000 A

7500 A

5000 A

2500 A

0_

0.00 0.01 0.02 0.03 0.04 0.05

sn_list = df ats.SerialNumber.unique() dfs = {} for sn in sn _list: g = f"SerialNumber=={sn}"
print(q) dfq = df ats.query(q) dfg['delta'] = dfq.t.diff().dt.total seconds() dfs[sn] = dfq
#plt.plot(df.PCClock, df.N) print(sn, dfq.size, dfq.delta.mean())

In []:

In [18]:

Out[18]:

Combined

plt.plot(df 72310017.dE, df 72310017.dN, 'b-')
plt.plot(df 72613087.dE, df 72613087.dN, 'r-')
plt.plot(df r780.dE, df r780.dN, 'c-')
plt.plot(df judo.dE, df judo.dN, 'g-')

plt.xlabel('Delta Easting')

plt.ylabel('Delta Northing")

plt.title('Distances from start location')

plt.legend(['MT 72310017', 'MT 72613087', 'R780', 'Judo Primary'l])

<matplotlib.legend.Legend at 0x7d103762a470>

about:srcdoc

6/22/24, 16:47

CSNMR-3189 sanity check

10 0of 11

In [23]:

Out[23]:

Distances from start location

—— MT 72310017
— MT 72613087

151 — R780

Delta Northing

fig,

axo.
axo.
axo.
axo.
axo0.
axo0.

axl.
axl.
axl.
axl.
axl.

ax2.
ax2.
ax2.
ax2.
ax2.

plt

plt

[
o
1

(%]
1

—— Judo Primary

-20 -15 -10 -5 0 5
Delta Easting

(ax0, axl, ax2) = plt.subplots(3, 1, figsize=(12, 6))

plot(df 72310017.t, df 72310017.dE, 'b-')
plot(df 72613087.t, df 72613087.dE, 'r-')
plot(df r780.time utc, df r780.dE, 'c-')
plot(df judo.time utc, df judo.dE, 'g-')
set title('Distances from start location')
set ylabel('Delta Easting')

plot(df 72310017.t, df 72310017.dN, 'b-')
plot(df 72613087.t, df 72613087.dN, 'r-')
plot(df r780.time utc, df r780.dN, 'c-')
plot(df judo.time utc, df _judo.dN, 'g-')
set _ylabel('Delta Northing"')

plot(df 72310017.t, df 72310017.dH, 'b-')
plot(df 72613087.t, df 72613087.dH, 'r-')
plot(df r780.time utc, df r780.dU, 'c-')
plot(df judo.time utc, df judo.dU, 'g-')
set _ylabel('Delta Up"')

.xXlabel('Time")

.legend(['MT 72310017', 'MT 72613087', 'R780', 'Judo Primary'])

<matplotlib.legend.Legend at 0x7d10376a6710>

about:srcdoc

6/22/24, 16:47

CSNMR-3189 sanity check

about:srcdoc

Distances from start location

10 A
[=2]
=4
£ o - N
©
w
S -10 4
[
a)
_20 A T T T T T T T T T
21 18:45 21 19:00 21 19:15 21 19:30 2119:45 21 20:00 21 20:15 21 20:30 21 20:45
o
£
£ 10 -
(=}
=z
B
3 07
T T T T T T T T T
1s 2118:45 21 19:00 21 19:15 21 19:30 2119:45 21 20:00 21 20:15 21 20:30 21 20:45
" | — wmT 72310017
a 1.0 —— MT 72613087
> —— R780
S]
g 0.5 1 = Judo Primary
0.0
2118:45 21 19:00 2119:15 21 19:30 2119:45 21 20:00 21 20:15 21 20:30 21 20:45
Time

In []:

11 of 11

6/22/24, 16:47

