
Imports

%load_ext autoreload
%autoreload 2

#import viewdat_cno_lib as vdl

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from collections import namedtuple

import geopy.distance

import datetime

import time

import os

import subprocess

import math

import glob

import shutil

Functions

def combine_T04(hourly_dir, out_name):

if os.path.isfile(out_name):
print(f'{out_name} already exists.. deleting it')

os.remove(out_name)

#print(f"   combine({fname_base}, {out_name})")

# List of files to concat

flist = sorted(glob.glob('*T04', root_dir=os.path.join(hourly_dir)))

with open(out_name, 'wb') as wfd:

for f in flist:

f_path = os.path.join(hourly_dir, f)

print(f"    appending {f} to {out_name}")

with open(f_path, 'rb') as fd:

shutil.copyfileobj(fd, wfd)

def pos_read(fname_tsv, header_n_rows=159):
if not os.path.isfile(fname_tsv):

print(f"Unable to find {fname_tsv}")

return None
# Import the data into a Pandas DataFrame, and do some cleanup

df = pd.read_csv(fname_tsv, delimiter='\t', header=header_n_rows, na_values

df.rename(columns=lambda x: x.strip(), inplace=True) # drop whitespace

df = df.replace({'Nan': np.nan})
#print(list(df.columns))

cols_rename = {

'%Week': 'Week',

# 'TRACK': 'Track',

}

df.rename(columns=cols_rename, inplace=True)
#df = week_rollover_unwrap(df)

return df

In [2]:

In [3]:

In [4]:

CSNMR-3189_sanity_check about:srcdoc

1 of 11 6/22/24, 16:47



# This class was brazenly stolen from mutils.py in the Sunnyvale CVS repo

class OrbitConst(object):

"""

    Orbital constants

    """

PI = 3.14159265358979323846

A_WGS84 = 6378137.0

B_WGS84 = 6356752.314245179

E2_WGS84 = 6.69437999013e-3

ONE_MIN_E2 = 0.99330562000987

SQRT_ONE_MIN_E2 = 9.96647189335258e-1

    

# This function was brazenly stolen from mutils.py in the Sunnyvale CVS repo

def llh2enu(llh, ref_llh, is_rad=False, is_ref_rad=False):
"""

    Convert lat/lon/height to delta east/north/up.

    llh = array of lat/lon/height [lat/lon in degrees by default]

    ref_llh = point or array of lat/lon/height [lat/lon in degrees by default]

    is_rad = True -> "llh" lat/lon is radians, else in degrees

    is_ref_rad = True -> "ref_llh" lat/lon is radians, else in degrees

    """

# Make sure inputs are arrays

if len(np.shape(llh)) == 1:

llh = llh.reshape((1, len(llh)))

if len(np.shape(ref_llh)) == 1:

ref_llh = ref_llh.reshape((1, len(ref_llh)))

# Convert to radians?

scale1 = np.ones(np.shape(llh))
scale2 = np.ones(np.shape(ref_llh))
ref_lat = np.copy(ref_llh[:, 0])

if not is_rad:

scale1[:, 0:2] *= OrbitConst.PI/180
if not is_ref_rad:

scale2[:, 0:2] *= OrbitConst.PI/180
ref_lat *= OrbitConst.PI/180

# Compute the residuals

dllh = llh*scale1 - ref_llh*scale2

# Compute Radii of Curvature

W = np.sqrt(1 - OrbitConst.E2_WGS84 * np.sin(ref_lat)**2)
N = OrbitConst.A_WGS84 / W

M = OrbitConst.A_WGS84 * (1 - OrbitConst.E2_WGS84) / W**3

# Compute Metric Components

dE = dllh[:, 1] * N * np.cos(ref_lat)
dN = dllh[:, 0] * M

dU = dllh[:, 2]

return (dE, dN, dU)

def calc_heading(lat1, long1, lat2, long2):

rlat1 = math.radians(lat1)
rlat2 = math.radians(lat2)
rlon1 = math.radians(long1)
rlon2 = math.radians(long2)
dLon = rlon2 - rlon1

In [5]:

In [6]:

CSNMR-3189_sanity_check about:srcdoc

2 of 11 6/22/24, 16:47



x = math.cos(rlat2) * math.sin(dLon)
y = math.cos(rlat1) * math.sin(rlat2)
y -= math.sin(rlat1) * math.cos(rlat2) * math.cos(dLon)
heading = np.arctan2(x, y)

heading = math.degrees(heading)
heading = (heading + 180.0) % 360.0 # convert from -180:+180 to 0:360

return heading

from datetime import datetime, timedelta

import pytz

def gps_datetime(time_week, time_ms, leap_seconds=37):
# 37 leap seconds seems to be correct for 2016-12-31 through at least 2023

gps_epoch = datetime(1980, 1, 6, tzinfo=pytz.utc)
# gps_time - utc_time = leap_seconds

return gps_epoch + timedelta(weeks=time_week, milliseconds=time_ms, seconds

print(gps_datetime(2292, 266792379))

print(gps_datetime(2319, 500177.0*1000))

2023-12-13 02:05:55.379000+00:00

2024-06-21 18:55:40+00:00

def delta_enu_start(df):

df[['dN', 'dE', 'dH']] = df[['N', 'E', 'Ele']] - df.iloc[0][['N', 'E'

return df

def delta_pos_start(df):

start = df.iloc[0]
start_pt = np.array([start.MLat, start.MLon, start.MHgt])
#print(f'start_pt: {start_pt}')

llh = np.array(df[['MLat', 'MLon', 'MHgt']])

#print('llh:')

#print(llh)

a = np.array(llh2enu(llh, start_pt))

#print('a:')

#display(a)

#print(a.shape)

#print(df.shape)

df[['dE', 'dN', 'dU']] = a.transpose()
return df

def dms_to_dd(d:float, m:float, s:float):

dd = d + float(m)/60 + float(s)/3600
if d<0:

dd = float(d) - float(m)/60 - float(s)/3600
else:

dd = float(d) + float(m)/60 + float(s)/3600
return dd

def import_t04_dir(dir_name, fname_base):

fname_T04 = f'{fname_base}.T04'

fname_tsv = f'{fname_base}_pos.tsv'

combine_T04(dir_name, fname_T04)

cmd = f'viewdat -d35:2 --t04_vector_position -mb -h {fname_T04} -o{fname_tsv

print(f'{cmd=}')

subprocess.run(cmd)
df = pos_read(fname_tsv, 159) #102)

In [7]:

In [8]:

In [9]:

In [10]:

In [11]:

CSNMR-3189_sanity_check about:srcdoc

3 of 11 6/22/24, 16:47



df = df[['Week', 'Time', 'RefSys', 

'MFixMode', 'MFixType', 'MFixInfo', 

'MLat', 'MLon', 'MHgt', 'MSigN', 'MSigE', 'MSigU', 'MSigEN',

'RefLat', 'RefLon', 'RefHgt',

'VLat', 'VLon', 'VHgt', 'VSigN', 'VSigE', 'VSigU', 'VSigEN',

'corrAge']]

df = delta_pos_start(df)

df['time_utc'] = df.apply(lambda x: gps_datetime(time_week = x['Week'

return df

Viewdat (Judo, R780)

df_judo = import_t04_dir('Judo_EB93', 'judo')

#display(df_judo)

judo.T04 already exists.. deleting it

    appending EB1-5093__202406211845.T04 to judo.T04

    appending EB1-5093__202406211900.T04 to judo.T04

    appending EB1-5093__202406211915.T04 to judo.T04

    appending EB1-5093__202406211930.T04 to judo.T04

    appending EB1-5093__202406211945.T04 to judo.T04

    appending EB1-5093__202406212000.T04 to judo.T04

    appending EB1-5093__202406212015.T04 to judo.T04

    appending EB1-5093__202406212030.T04 to judo.T04

cmd=['viewdat', '-d35:2', '--t04_vector_position', '-mb', '-h', 'judo.T04'

, '-ojudo_pos.tsv']

df_r780= import_t04_dir('R780', 'r780')

#display(df_r780)

r780.T04 already exists.. deleting it

    appending Trimble___202406211845.T04 to r780.T04

    appending Trimble___202406211900.T04 to r780.T04

    appending Trimble___202406211915.T04 to r780.T04

    appending Trimble___202406211930.T04 to r780.T04

    appending Trimble___202406211945.T04 to r780.T04

    appending Trimble___202406212000.T04 to r780.T04

    appending Trimble___202406212015.T04 to r780.T04

    appending Trimble___202406212030.T04 to r780.T04

    appending Trimble___202406212045.T04 to r780.T04

cmd=['viewdat', '-d35:2', '--t04_vector_position', '-mb', '-h', 'r780.T04'

, '-or780_pos.tsv']

judo_N = df_judo.shape[0] -1
print('Judo UTC:', df_judo.time_utc[0], df_judo.time_utc[judo_N]) #, df_judo.time_utc[judo_N]

r780_N = df_r780.shape[0] -1
print('R780 UTC:', df_r780.time_utc[0], df_r780.time_utc[r780_N]) #, df_r780.time_utc[r780_N]

plt.plot(df_judo.time_utc)
plt.plot(df_r780.time_utc)
print(df_judo.shape[0])
#print(df_judo.time_utc[1800:1805])

#print(df_72310017.t[0:5])

Judo UTC: 2024-06-21 18:55:40+00:00 2024-06-21 20:44:22.500000+00:00

R780 UTC: 2024-06-21 18:44:23.100000+00:00 2024-06-21 20:45:25.800000+00:0

0

64829

In [12]:

In [13]:

In [14]:

CSNMR-3189_sanity_check about:srcdoc

4 of 11 6/22/24, 16:47



ATS

count = 0

header = None
mylist =[]
with open("ATSTest_LogFile JUDO IN LINE and PERP.txt") as file:

for line in file:

if line.startswith('ATSDataEvent'):
line = line.strip()
#print(line)

if header is None:
header = line.split("\t")
#print(header)

#print("")

else:
d = dict(zip(header, line.split("\t")))
mylist.append(d)
#if count < 3:

#    print(line.split("\t"))

#    print("")

count += 1

#if count > 10:

#    break

df_ats = pd.DataFrame(mylist)
df_ats = df_ats.drop(columns=['ATSDataEvent'])

df_ats = df_ats.astype({
'SerialNumber': 'int',

'N': 'float',

'E': 'float',

In [15]:

CSNMR-3189_sanity_check about:srcdoc

5 of 11 6/22/24, 16:47



'Ele': 'float',

})

df_ats['t'] = pd.to_datetime(df_ats['Date'] + ' ' + df_ats['PCClock'], utc

df_ats.t = df_ats.t + pd.Timedelta('06:00:00')
display(df_ats[['Date', 'Time', 'PCClock', 't']])

#display(df_ats.info())

#

# Split out the two MT Targets

#

df_72613087 = df_ats.query("SerialNumber==72613087")[['t', 'Date', 'Time'

df_72613087 = df_72613087[df_72613087.N != 0]

df_72310017 = df_ats.query("SerialNumber==72310017")[['t', 'Date', 'Time'

df_72310017 = df_72310017[df_72310017.N != 0]

df_72310017 = delta_enu_start(df_72310017)

df_72613087 = delta_enu_start(df_72613087)

display(df_72310017)

Date Time PCClock t

0 6/21/2024 13:04:03.638 13:04:03.545 2024-06-21 19:04:03.545000+00:00

1 6/21/2024 13:04:03.639 13:04:03.550 2024-06-21 19:04:03.550000+00:00

2 6/21/2024 13:04:03.640 13:04:03.591 2024-06-21 19:04:03.591000+00:00

3 6/21/2024 13:04:03.641 13:04:03.598 2024-06-21 19:04:03.598000+00:00

4 6/21/2024 13:04:03.722 13:04:03.644 2024-06-21 19:04:03.644000+00:00

... ... ... ... ...

231136 6/21/2024 14:42:22.431 14:42:22.402 2024-06-21 20:42:22.402000+00:00

231137 6/21/2024 14:42:22.516 14:42:22.451 2024-06-21 20:42:22.451000+00:00

231138 6/21/2024 14:42:22.517 14:42:22.503 2024-06-21 20:42:22.503000+00:00

231139 6/21/2024 14:42:22.593 14:42:22.553 2024-06-21 20:42:22.553000+00:00

231140 6/21/2024 14:42:24.442 14:42:22.602 2024-06-21 20:42:22.602000+00:00

231141 rows × 4 columns

CSNMR-3189_sanity_check about:srcdoc

6 of 11 6/22/24, 16:47



t Date Time SerialNumber PCTics PCClock

1
2024-06-21

19:04:03.550000+00:00
6/21/2024 13:04:03.639 72310017 607240031 13:04:03.550

3
2024-06-21

19:04:03.598000+00:00
6/21/2024 13:04:03.641 72310017 607240078 13:04:03.598

5
2024-06-21

19:04:03.650000+00:00
6/21/2024 13:04:03.723 72310017 607240125 13:04:03.650

7
2024-06-21

19:04:03.698000+00:00
6/21/2024 13:04:03.724 72310017 607240171 13:04:03.698

9
2024-06-21

19:04:03.749000+00:00
6/21/2024 13:04:03.801 72310017 607240218 13:04:03.749

... ... ... ... ... ...

231083
2024-06-21

20:42:19.985000+00:00
6/21/2024 14:42:20.015 72310017 613136421 14:42:19.985

231085
2024-06-21

20:42:20.037000+00:00
6/21/2024 14:42:20.090 72310017 613136484 14:42:20.037

231087
2024-06-21

20:42:20.089000+00:00
6/21/2024 14:42:20.094 72310017 613136531 14:42:20.089

231089
2024-06-21

20:42:20.136000+00:00
6/21/2024 14:42:22.031 72310017 613136578 14:42:20.136

231091
2024-06-21

20:42:20.186000+00:00
6/21/2024 14:42:22.033 72310017 613136625 14:42:20.186

97479 rows × 13 columns

df_72613087['delta'] = df_ats.t.diff().dt.total_seconds()
#display(df_72613087)

#print("")

#print(df_72613087.delta.mean())

plt.hist(df_72613087.delta)

(array([1.5303e+04, 2.1294e+04, 2.1080e+04, 6.9290e+03, 5.2010e+03,

        6.9640e+03, 6.8390e+03, 1.3614e+04, 3.7250e+03, 6.0000e+00]),

 array([0.    , 0.0062, 0.0124, 0.0186, 0.0248, 0.031 , 0.0372, 0.0434,

        0.0496, 0.0558, 0.062 ]),

 <BarContainer object of 10 artists>)

In [16]:

Out[16]:

CSNMR-3189_sanity_check about:srcdoc

7 of 11 6/22/24, 16:47



df_72310017['delta'] = df_ats.t.diff().dt.total_seconds()
#df_72310017.info()

#print(df_72310017.N.min())

#print(df_72310017.delta.mean())

plt.hist(df_72310017.delta)
#display(df_72310017)

(array([10403.,  7014.,  4372.,  4523.,  6069.,  6294., 21091., 19389.,

        14949.,  3375.]),

 array([-0.001 ,  0.0045,  0.01  ,  0.0155,  0.021 ,  0.0265,  0.032 ,

         0.0375,  0.043 ,  0.0485,  0.054 ]),

 <BarContainer object of 10 artists>)

In [17]:

Out[17]:

CSNMR-3189_sanity_check about:srcdoc

8 of 11 6/22/24, 16:47



sn_list = df_ats.SerialNumber.unique() dfs = {} for sn in sn_list: q = f"SerialNumber=={sn}"
print(q) dfq = df_ats.query(q) dfq['delta'] = dfq.t.diff().dt.total_seconds() dfs[sn] = dfq
#plt.plot(df.PCClock, df.N) print(sn, dfq.size, dfq.delta.mean())

 

Combined

plt.plot(df_72310017.dE, df_72310017.dN, 'b-')

plt.plot(df_72613087.dE, df_72613087.dN, 'r-')

plt.plot(df_r780.dE, df_r780.dN, 'c-')

plt.plot(df_judo.dE, df_judo.dN, 'g-')

plt.xlabel('Delta Easting')
plt.ylabel('Delta Northing')
plt.title('Distances from start location')
plt.legend(['MT 72310017', 'MT 72613087', 'R780', 'Judo Primary'])

<matplotlib.legend.Legend at 0x7d103762a470>

In [ ]:

In [18]:

Out[18]:

CSNMR-3189_sanity_check about:srcdoc

9 of 11 6/22/24, 16:47



fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(12, 6))

ax0.plot(df_72310017.t, df_72310017.dE, 'b-')

ax0.plot(df_72613087.t, df_72613087.dE, 'r-')

ax0.plot(df_r780.time_utc, df_r780.dE, 'c-')

ax0.plot(df_judo.time_utc, df_judo.dE, 'g-')

ax0.set_title('Distances from start location')
ax0.set_ylabel('Delta Easting')

ax1.plot(df_72310017.t, df_72310017.dN, 'b-')

ax1.plot(df_72613087.t, df_72613087.dN, 'r-')

ax1.plot(df_r780.time_utc, df_r780.dN, 'c-')

ax1.plot(df_judo.time_utc, df_judo.dN, 'g-')

ax1.set_ylabel('Delta Northing')

ax2.plot(df_72310017.t, df_72310017.dH, 'b-')

ax2.plot(df_72613087.t, df_72613087.dH, 'r-')

ax2.plot(df_r780.time_utc, df_r780.dU, 'c-')

ax2.plot(df_judo.time_utc, df_judo.dU, 'g-')

ax2.set_ylabel('Delta Up')

plt.xlabel('Time')

plt.legend(['MT 72310017', 'MT 72613087', 'R780', 'Judo Primary'])

<matplotlib.legend.Legend at 0x7d10376a6710>

In [23]:

Out[23]:

CSNMR-3189_sanity_check about:srcdoc

10 of 11 6/22/24, 16:47



 In [ ]:

CSNMR-3189_sanity_check about:srcdoc

11 of 11 6/22/24, 16:47


