
Imports

%load_ext autoreload
%autoreload 2

#import viewdat_cno_lib as vdl

import pandas as pd

import matplotlib.pyplot as plt

import os

import numpy as np

import subprocess

import math

The autoreload extension is already loaded. To reload it, use:

 %reload_ext autoreload

Functions

def pos_read(fname_tsv, header_n_rows=159):
if not os.path.isfile(fname_tsv):

print(f"Unable to find {fname_tsv}")

return None
Import the data into a Pandas DataFrame, and do some cleanup

df = pd.read_csv(fname_tsv, delimiter='\t', header=header_n_rows, na_values

df.rename(columns=lambda x: x.strip(), inplace=True) # drop whitespace

df = df.replace({'Nan': np.nan})
#print(list(df.columns))

cols_rename = {

'%Week': 'Week',

'TRACK': 'Track',

}

df.rename(columns=cols_rename, inplace=True)
#df = week_rollover_unwrap(df)

return df

This class was brazenly stolen from mutils.py in the Sunnyvale CVS repo

class OrbitConst(object):

"""

 Orbital constants

 """

PI = 3.14159265358979323846

A_WGS84 = 6378137.0

B_WGS84 = 6356752.314245179

E2_WGS84 = 6.69437999013e-3

ONE_MIN_E2 = 0.99330562000987

SQRT_ONE_MIN_E2 = 9.96647189335258e-1

This function was brazenly stolen from mutils.py in the Sunnyvale CVS repo

def llh2enu(llh, ref_llh, is_rad=False, is_ref_rad=False):
"""

 Convert lat/lon/height to delta east/north/up.

 llh = array of lat/lon/height [lat/lon in degrees by default]

 ref_llh = point or array of lat/lon/height [lat/lon in degrees by default]

In [43]:

In [44]:

In [45]:

moving_base about:srcdoc

1 of 8 6/18/24, 13:13

 is_rad = True -> "llh" lat/lon is radians, else in degrees

 is_ref_rad = True -> "ref_llh" lat/lon is radians, else in degrees

 """

Make sure inputs are arrays

if len(np.shape(llh)) == 1:

llh = llh.reshape((1, len(llh)))

if len(np.shape(ref_llh)) == 1:

ref_llh = ref_llh.reshape((1, len(ref_llh)))

Convert to radians?

scale1 = np.ones(np.shape(llh))
scale2 = np.ones(np.shape(ref_llh))
ref_lat = np.copy(ref_llh[:, 0])

if not is_rad:

scale1[:, 0:2] *= OrbitConst.PI/180
if not is_ref_rad:

scale2[:, 0:2] *= OrbitConst.PI/180
ref_lat *= OrbitConst.PI/180

Compute the residuals

dllh = llh*scale1 - ref_llh*scale2

Compute Radii of Curvature

W = np.sqrt(1 - OrbitConst.E2_WGS84 * np.sin(ref_lat)**2)
N = OrbitConst.A_WGS84 / W

M = OrbitConst.A_WGS84 * (1 - OrbitConst.E2_WGS84) / W**3

Compute Metric Components

dE = dllh[:, 1] * N * np.cos(ref_lat)
dN = dllh[:, 0] * M

dU = dllh[:, 2]

return (dE, dN, dU)

def calc_heading(lat1, long1, lat2, long2):

rlat1 = math.radians(lat1)
rlat2 = math.radians(lat2)
rlon1 = math.radians(long1)
rlon2 = math.radians(long2)
dLon = rlon2 - rlon1

x = math.cos(rlat2) * math.sin(dLon)
y = math.cos(rlat1) * math.sin(rlat2)
y -= math.sin(rlat1) * math.cos(rlat2) * math.cos(dLon)
heading = np.arctan2(x, y)

heading = math.degrees(heading)
heading = (heading + 180.0) % 360.0 # convert from -180:+180 to 0:360

return heading

def dms_to_dd(d:float, m:float, s:float):

dd = d + float(m)/60 + float(s)/3600
if d<0:

dd = float(d) - float(m)/60 - float(s)/3600
else:

dd = float(d) + float(m)/60 + float(s)/3600
return dd

def plot_neu(df, title, fname=None):
ne_lim = np.max([df["E"].abs().max(), df["N"].abs().max(),

df["vE"].abs().max(), df["vN"].abs().max(),

In [46]:

In [47]:

In [48]:

moving_base about:srcdoc

2 of 8 6/18/24, 13:13

])

fix, (ax0, ax1) = plt.subplots(1, 2, figsize=(12,5))

ax0.plot(df.E, df.N, '+')

ax0.plot(0, 0, 'ro')

ax0.plot(df.vE, df.vN, 'cx')

ax0.set_xlabel('Easting')
ax0.set_ylabel('Northing')
ax0.set_title('Horizontal')
ax0.legend(['Primary', 'Reference', 'Vector'])

ax0.axis('square')
ax0.set_xlim([-ne_lim, ne_lim])

ax0.set_ylim([-ne_lim, ne_lim])

print(f'Easting spread: {df.E.max()-df.E.min():0.3f}m')
print(f'Northing spread: {df.N.max()-df.N.min():-.3f}m')

ax1.plot(df.E, df.U, '+')

ax1.plot(0, 0, 'ro')

ax1.plot(df.vE, df.vU, 'cx')

ax1.set_xlabel('Easting')
ax1.set_ylabel('Upping')
ax1.set_title('Vertical')
ax1.legend(['Primary', 'Reference', 'Vector'])

#ax1.axis('square')

ax1.set_xlim([-ne_lim, ne_lim])

#ax1.set_ylim([-ne_lim_1910, ne_lim_1910])

plt.suptitle(title)
print(f'Upping spread: {df1910.U.max()-df1910.U.min():-.3f}m')

if fname is not None:
plt.savefig(fname)

Reference

The following from Judo moving base smoke test

Moving base judo was on B1 = 39°53'45.53852", 105°06'48.39732, 1644.897

Vector judo was on B2 = 39°53'45.51493", 105°06'48.31353, 1644.906

Length between B1 and B2 = 2.119m

Azimuth from B1 to B2 109.8284126°

B1_Lat = dms_to_dd(39, 53, 45.53852)

B1_Lon = dms_to_dd(-105, 6, 48.39732)

B1_Hgt = 1644.897

B1_llh = np.array([B1_Lat, B1_Lon, B1_Hgt])

print(f'{B1_llh=}')

B2_Lat = dms_to_dd(39, 53, 45.51493)

B2_Lon = dms_to_dd(-105, 6, 48.31353)

B2_Hgt = 1644.906

B2_llh = np.array([B2_Lat, B2_Lon, B2_Hgt])

print(f'{B2_llh=}')

In [49]:

moving_base about:srcdoc

3 of 8 6/18/24, 13:13

https://docs.google.com/document/d/1emg9laypkMTw59sw85Z98evTwy1eW84I/edit?usp=sharing&ouid=103901858714909842793&rtpof=true&sd=true
https://docs.google.com/document/d/1emg9laypkMTw59sw85Z98evTwy1eW84I/edit?usp=sharing&ouid=103901858714909842793&rtpof=true&sd=true

dE, dN, dU = llh2enu(B1_llh, B2_llh)

print(np.sqrt(dE**2 + dN**2), dU)

heading = calc_heading(B2_Lat, B2_Lon, B1_Lat, B1_Lon)

print(heading)

B1_llh=array([39.89598292, -105.1134437 , 1644.897])

B2_llh=array([39.89597637, -105.11342043, 1644.906])

[2.11935585] [-0.009]

110.15123875774027

Data 06-12

B2 (6348C01835)

cmd = 'viewdat -d35:2 --t04_vector_position -mb -h 0612/6348C01835*.T04 -o0612/6348C01835.

print(f'{cmd=}')

subprocess.run(cmd)
df1835 = pos_read('0612/6348c01835.tsv', 159) #102)

df1835[['MLat', 'MLon', 'MHgt', 'MvLat', 'MvLon', 'MvHgt','Pos2Lat', 'Pos2Lon'

cmd=['viewdat', '-d35:2', '--t04_vector_position', '-mb', '-h', '0612/6348

C01835*.T04', '-o0612/6348C01835.tsv']

MLat 39.895977

MLon -105.113422

MHgt 1645.119866

MvLat 0.000011

MvLon 0.001479

MvHgt 0.003882

Pos2Lat NaN

Pos2Lon NaN

Pos2Hgt NaN

dtype: float64

Judo1835_llh = np.array(df1835[['MLat', 'MLon', 'MHgt']].mean())
print(Judo1835_llh)

[39.8959772 -105.11342238 1645.1198662]

cmd = 'viewdat -d35:2 --t04_vector_position -mb -h 0612/6348C01835*.T04 -
o0612/6348C01835_vp.tsv'.replace(' ', ',').split(',') print(f'{cmd=}') subprocess.run(cmd) df1835_vp
= pos_read('0612/6348c01835_vp.tsv', 159) df1835_vp[['MLat', 'MLon', 'MHgt', 'MvLat', 'MvLon',
'MvHgt','Pos2Lat', 'Pos2Lon', 'Pos2Hgt']].mean()Judo1835_vp_llh = np.array(df1835_vp[['MLat',
'MLon', 'MHgt']].mean()) print(np.array(Judo1835_vp_llh))

B1 (6348C01910)

cmd = 'viewdat -d35:2 --t04_vector_position -mb -h 0612/6348C01910*.T04 -o0612/6348C01910.

print(f'{cmd=}')

subprocess.run(cmd)
df1910 = pos_read('0612/6348c01910.tsv', 159) #102)

#df1910[['MLat', 'MLon', 'MHgt', 'MvLat', 'MvLon', 'MvHgt','Pos2Lat', 'Pos2Lon', 'Pos2Hgt']].m

Judo1910_llh = np.array(df1910[['MLat', 'MLon', 'MHgt']].mean())
print(Judo1910_llh)

cmd=['viewdat', '-d35:2', '--t04_vector_position', '-mb', '-h', '0612/6348

C01910*.T04', '-o0612/6348C01910.tsv']

[39.89598437 -105.11344561 1645.11030185]

In [50]:

Out[50]:

In [51]:

In [52]:

moving_base about:srcdoc

4 of 8 6/18/24, 13:13

dE, dN, dU = llh2enu(Judo1835_llh, Judo1910_llh)

print(np.sqrt(dE**2 + dN**2), dU)

heading = calc_heading(Judo1910_llh[0], Judo1910_llh[1], Judo1835_llh[0],

print(heading)

[2.14009197] [0.00956436]

291.8998301485318

Calc Northings, Eastings, Up

dE, dN, dU = llh2enu(np.array(df1835[['MLat', 'MLon', 'MHgt']]), B2_llh)

df1835['E'] = dE

df1835['N'] = dN

df1835['U'] = dU

vdE, vdN, vdU = llh2enu(np.array(df1835[['VLat', 'VLon', 'VHgt']]), B2_llh

df1835['vE'] = vdE

df1835['vN'] = vdN

df1835['vU'] = vdU

dE, dN, dU = llh2enu(np.array(df1910[['MLat', 'MLon', 'MHgt']]), B1_llh)

df1910['E'] = dE

df1910['N'] = dN

df1910['U'] = dU

vdE, vdN, vdU = llh2enu(np.array(df1910[['VLat', 'VLon', 'VHgt']]), B1_llh

df1910['vE'] = vdE

df1910['vN'] = vdN

df1910['vU'] = vdU

Plots

plot_neu(df1835, 'B2 (6348C01835) 06-12', '0612/B2_6348C01835.png')

Easting spread: 0.863m

Northing spread: 0.608m

Upping spread: 9.069m

In [53]:

In [54]:

In [55]:

In [56]:

moving_base about:srcdoc

5 of 8 6/18/24, 13:13

plot_neu(df1910, 'B1 (6348C01910) 6-12', '0612/B1_6348C01910.png')

Easting spread: 2.494m

Northing spread: 14.342m

Upping spread: 9.069m

Data 06-14

B2 (6348C01835)

cmd = 'viewdat -d35:2 --t04_vector_position -mb -h 0614/6348C01835*.T04 -o0614/6348C01835.

print(f'{cmd=}')

subprocess.run(cmd)
df1835 = pos_read('0614/6348c01835.tsv', 159) #102)

df1835[['MLat', 'MLon', 'MHgt', 'MvLat', 'MvLon', 'MvHgt','Pos2Lat', 'Pos2Lon'

cmd=['viewdat', '-d35:2', '--t04_vector_position', '-mb', '-h', '0614/6348

C01835*.T04', '-o0614/6348C01835.tsv']

MLat 39.895977

MLon -105.113421

MHgt 1644.994333

MvLat -0.000756

MvLon 0.000782

MvHgt 0.003041

Pos2Lat NaN

Pos2Lon NaN

Pos2Hgt NaN

dtype: float64

Judo1835_llh = np.array(df1835[['MLat', 'MLon', 'MHgt']].mean())
print(Judo1835_llh)

[39.89597656 -105.11342054 1644.99433339]

cmd = 'viewdat -d35:2 --t04_vector_position -mb -h 6348C01835/6348C01835*.T04 -
o6348C01835_vp.tsv'.replace(' ', ',').split(',') print(f'{cmd=}') subprocess.run(cmd) df1835_vp =
pos_read('6348c01835_vp.tsv', 159) df1835_vp[['MLat', 'MLon', 'MHgt', 'MvLat', 'MvLon',
'MvHgt','Pos2Lat', 'Pos2Lon', 'Pos2Hgt']].mean()Judo1835_vp_llh = np.array(df1835_vp[['MLat',
'MLon', 'MHgt']].mean()) print(np.array(Judo1835_vp_llh))

In [57]:

In [58]:

Out[58]:

In [59]:

moving_base about:srcdoc

6 of 8 6/18/24, 13:13

B1 (6348C01910)

cmd = 'viewdat -d35:2 --t04_vector_position -mb -h 0614/6348C01910*.T04 -o0614/6348C01910.

print(f'{cmd=}')

subprocess.run(cmd)
df1910 = pos_read('0614/6348c01910.tsv', 159) #102)

#df1910[['MLat', 'MLon', 'MHgt', 'MvLat', 'MvLon', 'MvHgt','Pos2Lat', 'Pos2Lon', 'Pos2Hgt']].m

Judo1910_llh = np.array(df1910[['MLat', 'MLon', 'MHgt']].mean())
print(Judo1910_llh)

cmd=['viewdat', '-d35:2', '--t04_vector_position', '-mb', '-h', '0614/6348

C01910*.T04', '-o0614/6348C01910.tsv']

[39.89598379 -105.11344383 1644.97629956]

dE, dN, dU = llh2enu(Judo1835_llh, Judo1910_llh)

print(np.sqrt(dE**2 + dN**2), dU)

heading = calc_heading(Judo1910_llh[0], Judo1910_llh[1], Judo1835_llh[0],

print(heading)

[2.14757487] [0.01803383]

292.03276180066945

Calc Northings, Eastings, Up

dE, dN, dU = llh2enu(np.array(df1835[['MLat', 'MLon', 'MHgt']]), B2_llh)

df1835['E'] = dE

df1835['N'] = dN

df1835['U'] = dU

vdE, vdN, vdU = llh2enu(np.array(df1835[['VLat', 'VLon', 'VHgt']]), B2_llh

df1835['vE'] = vdE

df1835['vN'] = vdN

df1835['vU'] = vdU

dE, dN, dU = llh2enu(np.array(df1910[['MLat', 'MLon', 'MHgt']]), B1_llh)

df1910['E'] = dE

df1910['N'] = dN

df1910['U'] = dU

vdE, vdN, vdU = llh2enu(np.array(df1910[['VLat', 'VLon', 'VHgt']]), B1_llh

df1910['vE'] = vdE

df1910['vN'] = vdN

df1910['vU'] = vdU

Plots

plot_neu(df1835, 'B2 (6348C01835) 06-14', '0614/B2_6348C01835.png')

Easting spread: 0.075m

Northing spread: 0.065m

Upping spread: 0.147m

In [60]:

In [61]:

In [62]:

In [63]:

In [64]:

moving_base about:srcdoc

7 of 8 6/18/24, 13:13

plot_neu(df1910, 'B1 (6348C01910)', '0614/B1_6348C01910.png')

Easting spread: 0.073m

Northing spread: 0.065m

Upping spread: 0.147m

In [65]:

moving_base about:srcdoc

8 of 8 6/18/24, 13:13

